
Software-in-the-Loop Using Virtual CAN Buses: Current
Solutions and Challenges

Thomas Liebezeit, Andreas Junghanns, Mirco Bonin, Roland Serway

Abstract

Software is used today to perform ever more complex automotive functions. This
may involve local sensors and actuators; however, sensors, actuators and functions
of remote control units are increasingly being used to implement functions of
electronic control units (ECUs).
Remote access requires some means of inter-ECU communication. The most
commonly used standard in the automotive domain today consists of Controller Area
Network (CAN) buses [1].
The development of distributed automotive software functions requires an excellent
understanding of the dynamic effects and rigorous testing of these functions. The
continuing thrust towards virtualizing development and test (MiL and SiL) makes it
increasingly important to support virtual buses.
This paper shows how introducing CAN bus communication into SiL platforms can
significantly improve simulated functionalities with a simultaneous dramatic reduction
in the overall setup costs by using CAN description formats (e.g. DBC) as
specification for the communication between SiL components, such as ECUs, plant
models and/or rest bus simulations.

Kurzfassung

Die steigende Komplexität von Fahrzeugfunktionen wird zunehmend durch Software
realisiert. Solche Funktionen nutzen dazu hauptsächlich lokale Sensoren und
Aktuatoren. Allerdings greifen solche Funktionen auch immer häufiger auf Sensoren,
Aktuatoren und Funktionen anderer Steuergeräte zu.
Dieser Fremdzugriff benötigt eine Form der Inter-ECU-Kommunikation. Der heute
häufigste Standard für diese Art der Steuergerätekommunikation im Fahrzeug ist das
Controller Area Network (CAN) Protokoll.
Die Entwicklung solcher verteilter Fahrzeugfunktionen verlangt grundlegendes
Verständnis der dynamischen Effekte in solchen Netzwerken und deren
umfassenden Test. Die Zunahme der Virtualisierung in der Steuergeräteentwicklung
und –test (MiL und SiL) macht eine Verfügbarkeit von CAN-Netzwerken in diesen
virtuellen Entwicklungsumgebungen wünschenswert.
In diesem Vortrag zeigen wir, dass die Nachbildung der CAN-Kommunikation in SiL-
Plattformen nicht nur die Zahl der simulierten Funktionen erhöht, sondern gleichzeitig
sogar den Setup-Aufwand verringert, weil es möglich ist, ganze Busse durch die
Nachnutzung von Netzwerkkommunikationsbeschreibungsformaten (z.B. DBC) mit
minimalem Aufwand zu definieren.

presented at: 5th Conference Simulation and Testing for Automotive Electronics, May 10-11, 2012, Berlin.

1. Motivation

Increasing pressure to save time and cut costs in the development and testing of
more and more complex automotive systems requires improved methods for
development and testing. Software-in-the-Loop is one such method used to front-
load development tasks to a time when physical prototypes do not yet exist. This is
achieved by coupling the control software (as virtual ECU) with a simulation of the
plant (e.g. a detailed transmission embedded in a roughly modeled car) [2].
Modern powertrain components are connected not just to each other but also to other
ECUs in the car. Values and commands are communicated, such as RPM,
pressures, temperatures, user-selected values, torque reduction requests and live
messages. The most common way to transmit these values is by Controller Area
Network (CAN).
The specific implementation of such a network is one of the central development
efforts. At the moment, these implementations can only be tested using HiL setups,
which entails waiting until physical ECUs are available. Changes in the network
configuration require a long change test cycle because a new HEX file has to be sent
to all the affected ECUs; this process often involves suppliers.
Current SiL setups connect a large number of signals to (potentially multiple) ECUs
and (potentially multiple) plant simulations, with or without rest bus simulations.
Signal properties have to be defined for each signal to ensure correct interactions.
This is largely a manual process and thus costly and error prone.
Using an existing CAN specification format to configure the communication behavior
of each of the SiL components can therefore drastically reduce the effort for defining
and implementing the (CAN) communication, while at the same time reducing
communication setup errors. For instance, CAN specifications define message and
signal names, signal units and their scaling as well as message timing properties.
Moreover and more importantly, when developing some layers of the CAN stack, the
inclusion of these layers in the SiL setups entails sending and receiving CAN
messages, not just the contained signals.
When CAN messages are sent through the SiL, it will be possible to change
message transmission delays and thus test the correctness and robustness of the
network communication.
Last but not least: HiL plant models (usually modeled in Simulink®) and rest bus
simulations use specific CAN blocks to send and receive CAN messages and their
signals. A SiL platform that supports CAN by offering a specific SiL CAN block set
can make it very cost-effective to reuse HiL models in a SiL environment.

2. CAN Basics

In a CAN network, messages are transmitted from one transmitter node to many
receiver nodes. A message may have up to 8-byte data which encode a number of
signals. Therefore, a signal may be between 1 and 64 bits wide.
DBC files specify a CAN network, including the network nodes, the messages sent
and received by each node, which signals are contained in a message, how they are
encoded and how often a message is sent (cyclic or event-based).
Using a DBC file, it is possible to generate C code that implements the send and
receive functionality of a node or to configure an emulation of such a CAN stack.
Each CAN message has a unique priority. Sending multiple messages at the same
time means that the message with the highest priority is sent.

CAN bus

CAN node A CAN node B CAN node C CAN node D

msg_5_rx

msg_1_rxmsg_1_rx

msg_5_tx msg_2_tx

msg_1_tx msg_3_rx
msg_2_rx

msg_3_tx

Figure 1: CAN bus

CAN communication is affected by slight variations in transmission delay or even lost
messages. Higher-level protocol layers may implement measures to deal with such
effects in the transport layer. Messages may contain CRCs and message counter
signals in order to ensure message and protocol integrity.
More information about CAN can be found here [1].

3. CAN buses in Silver

CAN bus support in Silver has been added to the Silver Basic Software (SBS) library.
This is a C library offering an API similar to ECU basic software layers. Among
others, Silver Basic software simplifies access for the application layer of the ECU
software to the services of the real-time OS, access to the electronic peripherals
(actuators and sensors into the plant) as well as communication stacks, such as a
CAN driver.
Silver Basic software is exactly this: an easy-to-use API gives access to a wide range
of functions available through Silver and a real-time OS emulation for connecting the
application software with the environment.

3.1 CAN transport layer in Silver

Silver offers a transport layer for CAN messages. A message can be sent at a
specific moment in time by a Silver module and received by any other module. Silver
supports multiple buses. It is possible to inspect each CAN message in the Silver
GUI offering simple debugging functionality.
There are two libraries for convenient access to Silver CAN messages:

1. The SBS library is used to send and receive CAN messages from C code, see
3.2.

2. A Simulink block set interfaces with the same C library when exporting the
model using Simulink Coder® (formerly Real-Time Workshop®), see 3.3.

There is a number of differences with respect to physical CAN transport layers in the
current Silver implementation, however:

1. Signals are transmitted instantaneously and can be received in the next Silver
macro step.

2. The bus bandwidth is infinite – all signals are transmitted, regardless of
message priority and number of messages sent.

3. If the same message is sent twice during the same macro step, only the last
message is transmitted.

Figure 2: Silver GUI with example CAN

To improve or even remove problem 1) and 2), it is possible to implement modules
that delay and lose CAN messages when protocol robustness analyses are required.
Such modules could also restrict bandwidth and implement a priority resolution
schema. Silver offers comfortable delay functions (in the modifier module and in the
assignment widget) that can be used for this purpose.

3.2 The C CAN library functions

The SBS library offers functions to access CAN messages in Silver. The following is
a brief overview of the most important functions, as a complete description of all
functions would go beyond the scope of this paper.

 : Used to inquire if a new message has arrived
 : Receive a message
 : Send a message
 : Verify sending of a message

There are, of course, functions to start and stop communication, as well as sending
and receiving messages, very similar to traditional driver interfaces.
The main difference, however, is that there are a number of functions for accessing
individual signals conveniently, such as:

 : Extract the physical (unscaled) signal value from
an 8-byte message

 : Insert the physical signal value into an 8-byte
message

 : Insert the raw (scaled) signal value into an
8-byte message

 : Receive a physical signal value from the
corresponding message as received previously

 : Send a physical signal value with the next
corresponding message

 : Equivalent to , just
with a raw signal value

 : Equivalent to , just
with a raw signal value

For handling signals and messages, raw and physical values, sending cyclic
messages and messages on demand, SBS needs a CAN specification in form of a
DBC file:

 : Configures the CAN communication with
◦ the CAN bus ID for distinguishing multiple CAN buses in Silver,
◦ the DBC file defining the current network,
◦ the node name that this Silver module enacts (possibly a number of node

names if this Silver module simulates multiple CAN nodes, such as a rest
bus simulation),

◦ a number of flags to influence the behavior of the CAN functions, and
◦ optionally the name of a file specifying a list of messages (not) to be sent

and received (by message ID or message name)
 : In case a DBC file is not available, cannot be

published or tool support for DBCs is missing, SBS offers a function to add
(and configure) one message at a time. Signal extraction is not supported in
this case, only 8-byte messages can be received and sent.

 : When changing the content of a message by
inserting signal values, the project-specific CRC for this message will be
invalid. Moreover, some messages require message counters to be
incremented in a project-specific way whenever a message is being sent.

 allows the specification of a DLL which
contains a function called to fix any signal inside the message
(CRC and/or counters, ...). Other optional functions include
◦ to check for validity of a message, and
◦ to ask if it is ok to send this message now.

This callback mechanism allows project-specific aspects of the CAN handling, not
specified in the DBC file, to be handled correctly and hide IP, such as the project-
specific CRC algorithm.
For easy debugging, SBS unpacks all sent messages and creates outputs for each of
the signals contained in the messages. This makes debugging of signal values much
simpler than manually decoding 8-byte message data. User flags are available to
help SBS create unique Silver names.
Silver comes with several working examples to demonstrate how to use CAN
messages and signals with SBS.

3.3 The Simulink Silver CAN block set

Figure 3: Silver Simulink library

Silver is supplied with a Simulink block set to access CAN messages (Figure 3).
When exporting a Simulink model that contains such blocks, Simulink Coder turns
these blocks into C code calling into the SBS functions introduced above. The
following CAN-related blocks are available:

 : This block exists once per CAN bus and its
parameters specify all the inputs similar to .

 : This block has all the signals of a message as outputs.
It has parameters that specify whether
◦ the signals should be physical or raw values,
◦ the receive time should be added as an output signal,
◦ if the message should be checked for integrity (via callback, see above)

and the result made available as an output signal as well.
 : This block allows a specified message to be sent. All

the signals to this message are generated as inputs to this block. The user
can specify if the inputs contain raw or physical values.

 : This block builds up a whole CAN rest bus at once. It
takes an input bus with all messages to be sent and provides an output bus
with read messages. An enable bus allows node enabling/disabling. The block
parameters are comparable with which uses the DBC file,
the bus ID, the active node name(s) and optionally an ignore file.

Besides building plant models in Simulink specifically for Silver SiL simulations, reuse
of HiL (plant) models for SiL was the primary motivation for developing this block set.
HiL models usually exist in sufficient quality for initial SiL tests to make them a good
starting point when setting up SiLs. This block set makes it possible to replace CAN
blocks that access physical CAN cards on HiL rigs with blocks that access the SiL
CAN messages.
Note: Other changes might be necessary to adapt HiL models for SiL, such as
hardware timer blocks [2].

3.4 DBC files to specify the behavior of a CAN node

Using DBC files to specify the behavior of a node in a (virtual) CAN network is
convenient, reduces the chances of errors and permits fast introduction of updates,
as DBC files are usually well maintained and tested by many engineers. The use of
DBC files this early in the development process also helps to test and debug these
DBC files.
Silver permits building modules with SBS where the DBC files can be specified at
runtime, allowing the end user to incorporate newer versions of the DBC if necessary
without rebuilding the module itself.
Changing the DBC file after coding may cause critical problems at runtime, because
of the signal names used in the C code. If, for instance, a signal was renamed or
removed from a message in the DBC file, the C code will still query its value and
create a runtime error. A safe change is a change in how a signal is coded inside a
message, as those details are hidden from the C code.

3.5 Accessing physical CAN networks from Silver

Silver offers a convenient way of accessing physical CAN networks (Figure 4). A
specialized Silver CAN module lets Silver access a CAN network device and
communicate through it with all the other devices on that physical CAN bus.
At the moment, this solution supports accessing Vector CAN cards and CAN USB. A
hardware abstraction layer allows easy addition of other CAN hardware in the future.
The Silver CAN module is configured using a DBC file and the network node name
Silver is enacted. The CAN module automatically generates its own input and output
variables for Silver, sending and receiving messages on the CAN network according
to the protocol specification of the DBC file. It is also possible to specify a callback
DLL for updating CRCs and message counters just before they are sent to the
physical CAN network (for details see above).
When using the Vector CAN driver, the CAN module can also be interfaced with the
Vector virtual CAN bus. This permits interaction with a wide range of Vector tools,
such as CANape® and CANoe®.
The CAN module is currently used quite extensively to build rapid control prototyping
setups. A virtualized controller software runs in Silver and is attached through the
CAN module with the physical ECU in the car; here it overwrites parts or the entire
function software by communicating directly with the basic software of the ECU,
setting actuators and reading sensor values using special CAN messages.

U
se

r
ca

llb
ac

k
D

LL
 (

C
R

Q
, .

..)

S
ilv

er
 C

A
N

 m
od

ul
e

CAN
messages

P
hy

si
ca

l C
A

N
 b

us
V

irt
ua

l C
A

N

bu
s

CANUSB device

Vector
CAN card

device

V
ec

to
r

C
A

N
 d

riv
er

Silver simulation

Figure 4: Accessing the physical CAN bus from Silver SiL

4. Example

IAV uses the newly developed CAN support to set up an improved SiL simulation of a
transmission control software in mass production.

4.1. General setup

The setup consists in principle of a virtual ECU with control software and an
environment model. The following diagram sketches this setup. For a detailed
description see [3].

Figure 5: SiL setup for transmission control software

Data exchange between those main simulation components uses exactly the same
interface definitions as in the car (CAN with more than 30 relevant messages, less
than 20 input ports and less than 20 output ports). Thus the original car CAN
definition (a DBC file) is used and the environment model serves as rest bus
simulation for the ECU.

4.2. Implementation

The virtual CAN has to be implemented on the virtual ECU as well as in the
environment model.

The ECU part implements the CAN interface directly via SBS functions from 3.2.
These are specified with just a few lines of C code.
The following source code example shows SBS implementation of a CAN bus
specified by a DBC file with a node. The layout (number of rx- and tx-messages)
depends on the definition of the DBC “Transmission” node.

void SBS_USER_get_module_interface20 (void *sbs, int argc, char **argv) {

 // first comes the definition of tasks

 ...

 // second is the Silver input/ output variable definition

 ...

 // now we want to create a can bus using a dbc file, node and ignore file

 SBS_CONF_AddDBC (

 sbs, // sbs handle

 1, // can bus ID

 "trans.dbc", // file name

 "Transmission",// node

 "ignore.txt", // ignore file name

 0x0, // flags, z.B. SBS_DBC_ENFORCE_RANGES

 0x0, // channel mask

 NULL // modified signals, e.g. message counter and CRCs

);

 return DLL_OK;

}

The BIOS functions for interactions with the CAN drivers are mapped using
corresponding SBS calls.

void BIOS_RX_Can_Message (Can_Message* msg) {

 int msg_handle = SBS_CAN_GetMsgHandle(sbs, SBS_IO_INPUT, 0, msg->id);

 // set message flag to not received

 msg->flag = SBS_CAN_STAT_RX_NOT_REC;

 // is handle valid?

 if (SBS_CAN_IsValidHandle(sbs, msg_handle) != 0) {

 // has a new message arrived?

 if (0 == SBS_CAN_RxMsgStatus(sbs, msg_handle)) {

 // receive can message

 SBS_CAN_RxMsg(sbs, msg_handle, msg->data, msg->size, &msg->flag);

 }

 }

}

void BIOS_TX_Can_Message (Can_Message* msg) {

 int msg_handle = SBS_CAN_GetMsgHandle(sbs, SBS_IO_OUTPUT, 0, msg->id);

 // initialise message flag to not transmitted

 msg->flag = SBS_CAN_STAT_TX_TRANS_NOT_OK;

 // is handle valid?

 if (SBS_CAN_IsValidHandle(sbs, msg_handle) != 0) {

 // ready to transmit?

 if (0 == SBS_CAN_TxMsgStatus(sbs, msg_handle)) {

 // transmit can message

 SBS_CAN_TxMsg(sbs, msg_handle, msg->data, msg->size, &msg->flag);

 }

 }

}

The environment model is branched from an existing Simulink model used as HiL
plant model. The Silver CAN block set is used here to substitute blocks that access
the physical hardware on the HiL with equivalent blocks that allow access to the
Silver CAN infrastructure.
While one global block configures the CAN, one block generates (reads from CAN)
or terminates (sends to CAN) the existing signals for each CAN message. These
blocks are configured by simply specifying the CAN bus ID and the message ID or
name in the block's parameter dialog. The timing is realized by Silver using the DBC
information. See figure 6 for an example.
Checksum generation is enabled by specifying a DLL containing a generation
function which is called for selected messages (by name) before sending.

Figure 6: Silver CAN block in Simulink

The DBC file defines a large number of messages being sent on the CAN network,
many of which are not part of the required CAN rest bus (Figure 7). A white list of
CAN messages (by ID) is used to reduce this list of the DBC-defined messages to
the CAN messages actually used in the SiL. A black-list approach is also possible but
is less convenient here because of the number of signals to be excluded.
The SiL setup uses a Silver CAN module for mirroring the SiL-internal CAN bus to a
Vector virtual CAN bus. This enables reading of all CAN messages by CANape in
addition to the analysis inside Silver, where each CAN signal is accessible in the
GUI.

Rest bus CAN (plant)

CAN bus

CAN node A
(transmission) CAN node B CAN node C CAN node D

msg_5_rx

msg_1_rxmsg_1_rx

msg_5_tx msg_2_tx

msg_1_tx msg_3_rx
msg_2_rx

msg_3_tx

Figure 7: CAN rest bus in Silver simulation

4.3. Example summary

The described solution drastically simplifies the setup of the SiL system compared to
previous, non-SBS-based setups. It reduces the amount of work for SiL signal
mapping by using existing standard CAN definitions.
It makes the simulation even more realistic and lets users compare signal sequences
directly with in-car behavior. Furthermore, CAN signal extraction and setting, as an
important part of the function software, are now also used in the SiL simulation.
IAV engineers were instrumental in improving and validating the current version of
SBS as well as the SBS-based CAN blocks for Simulink.

5. Summary and conclusions

Increasing pressure on engineering efficiency on the one hand and growing system
complexity on the other hand makes it a logical step to virtualize systems of
interconnected components. Network communication is an important part of such a
system.
This paper describes how to connect controller software and Simulink models to a
virtual CAN network in Silver using the Silver Basic Software. Silver is also used to
connect such a virtual CAN network to a physical CAN network.
It shows how existing CAN description files of the DBC format can be used to reduce
configuration effort while at the same time improving the consistency of definitions
between different CAN modules.
Using Silver as transport layer makes it possible to test more parts of the CAN stack
than previously possible, including CRC computations and message-counter
algorithms – all in a virtual environment, before physical prototypes exist.

Literature

[1] W. Zimmermann, R. Schmidgall: Bussysteme in der Fahrzeugtechnik, 3.
Auflage 2008, Vieweg + Teubner Verlag

[2] Liebezeit, Bräuer, Serway, Junghanns: Virtual ECUs for developing automotive
transmission software, Presented at CTI Symposium Innovative Fahrzeug-
Getriebe Hybrid- und Elektro-Antriebe, 5. - 8.12.2011, Berlin

[3] Liebezeit, Junghanns, Bonin, Serway: Silver Basic Software: Building Virtual
ECUs Quickly and Economically, ATZ Electroink, 03/2012

